Influence of the dissipation mechanism on collisionless magnetic reconnection in symmetric and asymmetric current layers

Influence of the dissipation mechanism on collisionless magnetic reconnection in symmetric and asymmetric current layers

Published in Physics of Plasmas

Nicolas Aunai, Michael Hesse, Carrie Black, Rebekah Evans, Maria Kuznetsova

Numerical studies implementing different versions of the collisionless Ohm’s law have shown a reconnection rate insensitive to the nature of the non-ideal mechanism occurring at the X line, as soon as the Hall effect is operating. Consequently, the dissipation mechanism occurring in the vicinity of the reconnection site in collisionless systems is usually thought not to have a dynamical role beyond the violation of the frozen-in condition. The interpretation of recent studies has, however, led to the opposite conclusion that the electron scale dissipative processes play an important dynamical role in preventing an elongation of the electron layer from throttling the reconnection rate. This work re-visits this topic with a new approach. Instead of focusing on the extensively studied symmetric configuration, we aim to investigate whether the macroscopic properties of collisionless reconnection are affected by the dissipation physics in asymmetric configurations, for which the effect of the Hall physics is substantially modified. Because it includes all the physical scales a priori important for collisionless reconnection (Hall and ion kinetic physics) and also because it allows one to change the nature of the non-ideal electron scale physics, we use a (two dimensional) hybrid model. The effects of numerical, resistive, and hyper-resistive dissipation are studied. In a first part, we perform simulations of symmetric reconnection with different non-ideal electron physics. We show that the model captures the already known properties of collisionless reconnection. In a second part, we focus on an asymmetric configuration where the magnetic field strength and the density are both asymmetric. Our results show that contrary to symmetric reconnection, the asymmetric model evolution strongly depends on the nature of the mechanism which breaks the field line connectivity. The dissipation occurring at the X line plays an important role in preventing the electron current layer from elongating and forming plasmoids.

Comparison between hybrid and fully kinetic models of asymmetric magnetic reconnection: Coplanar and guide field configurations

Comparison between hybrid and fully kinetic models of asymmetric magnetic reconnection: Coplanar and guide field configurations

ADS Link, DOI

Aunai, NicolasHesse, MichaelZenitani, Seiji,
 Kuznetsova, MariaBlack, CarrieEvans, Rebekah and Smets, Roch

Magnetic reconnection occurring in collisionless environments is a multi-scale process involving both ion and electron kinetic processes. Because of their small mass, the electron scales are difficult to resolve in numerical and satellite data, it is therefore critical to know whether the overall evolution of the reconnection process is influenced by the kinetic nature of the electrons, or is unchanged when assuming a simpler, fluid, electron model. This paper investigates this issue in the general context of an asymmetric current sheet, where both the magnetic field amplitude and the density vary through the discontinuity. A comparison is made between fully kinetic and hybrid kinetic simulations of magnetic reconnection in coplanar and guide field systems. The models share the initial condition but differ in their electron modeling. It is found that the overall evolution of the system, including the reconnection rate, is very similar between both models. The best agreement is found in the guide field system, which confines particle better than the coplanar one, where the locality of the moments is violated by the electron bounce motion. It is also shown that, contrary to the common understanding, reconnection is much faster in the guide field system than in the coplanar one. Both models show this tendency, indicating that the phenomenon is driven by ion kinetic effects and not electron ones.

Energy budgets in collisionless magnetic reconnection: Ion heating and bulk acceleration

Energy budgets in collisionless magnetic reconnection: Ion heating and bulk acceleration (ADS Link, DOI)

Aunai, N.; Belmont, G.; Smets, R.

This paper investigates the energy transfer in the process of collisionless antiparallel magnetic reconnection. Using two-dimensional hybrid simulations, we measure the increase of the bulk and thermal kinetic energies and compare it to the loss of magnetic energy through a contour surrounding the ion decoupling region. It is shown, for both symmetric and asymmetric configurations, that the loss of magnetic energy is not equally partitioned between heating and acceleration. The heating is found to be dominant and the partition ratio depends on the asymptotic parameters, and future investigations will be needed to understand this dependence.

The proton pressure tensor as a new proxy of the proton decoupling region in collisionless magnetic reconnection

The proton pressure tensor as a new proxy of the proton decoupling region in collisionless magnetic reconnection (ADS link, DOI)

Aunai, N.; Retinò, A.; Belmont, G.; Smets, R.; Lavraud, B.; Vaivads, A.

Cluster data is analyzed to test the proton pressure tensor variations as a proxy of the proton decoupling region in collisionless magnetic reconnection. The Hall electric potential well created in the proton decoupling region results in bounce trajectories of the protons which appears as a characteristic variation of one of the in-plane off-diagonal components of the proton pressure tensor in this region. The event studied in this paper is found to be consistent with classical Hall field signatures with a possible 20% guide field. Moreover, correlations between this pressure tensor component, magnetic field and bulk flow are proposed and validated, together with the expected counterstreaming proton distribution functions.